Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons.

نویسندگان

  • X C Yang
  • D J Reis
چکیده

We investigated in rat hippocampus neurons whether 4-(aminobutyl)guanidine (agmatine), formed by decarboxylation of L-arginine by arginine decarboxylase and metabolized to urea and putrescine, can modulate the function of N-methyl-D-aspartate (NMDA) receptor channels. In cultured hippocampal neurons studied by whole-cell patch clamp, extracellular-applied agmatine produced a voltage- and concentration-dependent block of NMDA but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid nor kainate currents. Analysis of the voltage dependence of the block suggests that agmatine binds at a site located within the NMDA channel pore with a dissociation constant of 952 microM at 0 mV and an electric distance of 0.62. We also tested effects of several agmatine analogs. Arcaine (1,4-butyldiguanidine) also produced a similar voltage-dependent block of the NMDA current, whereas putrescine (1, 4-butyldiamine) had little effect, suggesting that the guanidine group of agmatine is the active moiety when blocking the NMDA channel. Moreover, spermine (an endogenous polyamine) potentiated the NMDA current even in the presence of blocker agmatine or arcaine, suggesting that the guanidine-containing compounds agmatine and arcaine interact with the NMDA channel at a binding site different from that of spermine. Our results indicate that in hippocampal neurons agmatine selectively modulates the NMDA subclass of glutamate receptor channels mediated by the interaction between the guanidine group and the channel pore. The results support other data that agmatine may function as an endogenous neurotransmitter/neuromodulator in brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hippocampal neurons become more vulnerable to glutamate after subcritical hypoxia: an in vitro study.

The neurotoxicity of glutamate and hypoxia was investigated in vitro on hippocampal neurons, which were obtained from 18-day-old rat fetuses and were maintained for 3 days in culture. Chemically defined medium without glutamate was used and the plating density was low enough that the effect of exogenously added glutamate could be directly evaluated. In the normal culture condition 1 mM glutamat...

متن کامل

The effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats

Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...

متن کامل

Ethanol inhibition of synaptically evoked kainate responses in rat hippocampal CA3 pyramidal neurons.

Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate ...

متن کامل

The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells

Neuronal gap junctional hemichannels, composed of pannexin-1 subunits, have been suggested to play a crucial role in epilepsy and brain ischaemia. After a few minutes of anoxia or ischaemia, neurons in brain slices show a rapid depolarization to ∼-20 mV, called the anoxic depolarization. Glutamate receptor blockers can prevent the anoxic depolarization, suggesting that it is produced by a catio...

متن کامل

Protective effect of gabapentin on N-methyl-D-aspartate-induced excitotoxicity in rat hippocampal CA1 neurons.

Gabapentin was developed as an anticonvulsant, but has also been used to alleviate hyperalgesia in neuropathic pain. In this study, the protective effect of gabapentin against N-methyl-D-aspartate (NMDA)-induced excitotoxicity in rat hippocampal CA1 neurons was investigated. Pre-treatment with gabapentin reduced the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 288 2  شماره 

صفحات  -

تاریخ انتشار 1999